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Abstract

Most current WSN MAC protocol implementations have
multiple tasks to perform - deciding on correct timing,
sending of packets, sending of acknowledgements, etc.
However, as much of this is common to all MAC pro-
tocols, there is duplication of functionality, which leads
to larger MAC protocol code size and therefore increas-
ing numbers of bugs. Additionally, extensions to the ba-
sic functionality must be separately implemented in each
MAC protocol.

In this paper, we look at a different way to design a
MAC protocol, focusing on the providing of interfaces
which can be used to implement the common function-
ality separately, and on the core MAC role of timing. We
also look at some examples of MAC extensions that this
approach enables. We demonstrate a working implemen-
tation of these principles as a modified implementation of
T-MAC for TinyOS, and compare it with unmodified T-
MAC. We show a 14.8% smaller code size, with the same
overall functionality but increased extensibility, and while
maintaining similar performance. We also present results
and experiences from using the same framework to imple-
ment LMAC (a TDMA-based protocol). Both are demon-
strated with data from real-world experience using our 16
node testbed.

1 Introduction

Current Medium Access Control (MAC) protocol design
for Wireless Sensor Networks (WSNs) covers a wide va-
riety of different tasks. A MAC protocol is responsible
not only for deciding when to send packets, but also what
to send. For example, generating the standard Unicast se-
quence of RTS/CTS/DATA/ACK messages is usually the
responsibility of the MAC protocol after the application
has provided a data packet to be sent. The MAC must
maintain an internal state machine monitoring which one
of these packets it last sent or received, enabling it to de-
termine what packet should be sent/received next.

Unfortunately, the decision about whether a MAC’s im-
plementation of Unicast uses RTS/CTS messages (which
are seen by some designers as overhead, and by others
as required for reliability) tends to be a somewhat hap-
hazard affair. Often, whether they are required should be
an application level decision, and so some MAC proto-
cols that implement RTS/CTS allow this functionality to
be switched off and on at run time. However, this is an-
other example of a feature that may or may not be in a
given MAC protocol depending on the whims of its de-
signer.

Given that we have a set of functionality that should be
common to all MAC protocols, but certain implementa-

tions do or do not have particular features implemented,
we lose out on the advantage of common functionality:
the idea that we can ideally use any given MAC protocol
as a drop-in replacement. Additionally, because the dupli-
cation of effort results in both increased bug count due to
multiple implementations of the same ideas (e.g. Unicast),
and a system that is hard to extend, we conclude that the
current design brief for MAC protocols has a number of
significant problems, and so should be rethought.

In this paper we will set out an improved design brief
for MAC protocols, and show how these principles can
be implemented efficiently by demonstrating our exam-
ple λT-MAC protocol. The same principles will then be
shown to work for aλ -layers implementation of LMAC,
and we will show more data gathered from this protocol.

2 Rethinking MAC protocols

We wish to redesign the process for creating a MAC pro-
tocol such that the common functionality that does not
necessarily need to be in a MAC protocol itself can be
separated out. The first step to achieving this is to deter-
mine what is common functionality, and what are MAC-
specific requirements.

2.1 Existing concepts

Before we can start rethinking the design process for
MAC protocols, we need to look at the current state of the
art. Current WSN MAC protocols are usually grouped
in two different groups: TDMA protocols (LMAC [17],
TRAMA [13], PEDAMACS [2], etc) and CSMA-based
protocols (S-MAC [20], T-MAC [16], B-MAC [11], etc).
These two approaches are usually regarded as being very
different, and even within each approach we are shown
many different protocols that all do things in drastically
different ways. However, despite all the apparent differ-
ences, all of these protocols have one thing in common -
they are designed to manage the available time in the ra-
dio medium in order to fulfill certain metrics while send-
ing/receiving messages (latency, energy usage, etc).

Specifically, they all do this by managing when a partic-
ular node can send messages - TDMA protocols do this by
separating the available time into slots and allowing nodes
only to send in their slot; CSMA protocols do this by mak-
ing nodes perform carrier sense before sending (and in the
case of protocols like S-MAC, also by waiting until the
beginning of the next “frame”). In total, a MAC protocol
must do two things: given an application wishes to send a
packet, determine what time this node will be able to send
and send the packet at that point; and transmit appropriate
control packets so that the application layer will be able
to send packets in the future.
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2.2 Role separation

We then looked at separating the large existing MAC pro-
tocols into 3 parts: below the MAC, above the MAC and
a λMAC layer. This set of layers we refer to collectively
as the MAC stack, and together they should do everything
a traditional monolithic MAC layer would do on its own.

Our first task was looking at the modules required “be-
low” the λMAC layer. Working from the conclusions
of Section 2.1, we know that MAC protocols need to
send/receive packets, and to decide when to send/receive.
The first can be achieved with a “dumb” packet layer
(no queueing, minimal latency, switches radio on/off only
when told to); the second requires medium activity de-
tection (as part of the “dumb” packet layer) and/or a time
synchronisation layer. Time synchronisation can also then
be used to generate “frames” (periodic timers, as used by
all TDMA protocols and S/T-MAC), but it would need
to be designed such that it will not interfere with pro-
tocols that do not require time synchronisation (e.g. B-
MAC [11]).

The biggest question regarding how much we can pull
out of a standard MAC layer was deciding what aλMAC
layer actually really needs to do. Or in other words, know-
ing what a complete MAC stack needs to do, what makes
one MAC protocol different from another? Our conclu-
sion was simple: time management. One of the standard
opinions about the role of WSN MACs is power manage-
ment, and time management can be considered an exten-
sion of this - one of the time management roles is de-
ciding when to switch the radio on/off, but the other is
deciding when to start sending a packet sequence. How-
ever, once a node has started a packet sequence (e.g. all
of Unicast after the RTS message), the code becomes re-
markably generic and MAC-portable, yet is currently still
embedded within the MAC. What if we could extract that
- let the MAC decide when to initiate packet sequences,
but then hand off to a generic module to perform the ac-
tual sequence itself? This newtransmission layer module
could then be reused in other MAC protocols.

Now that basic packet sending/receiving, time synchro-
nisation, and the sending of particular packet sequences
have all been separated out, theλMAC layer only needs to
contain time management: that is, the maintenance of the
knowledge about what time is a good time to send packets;
allocating blocks of time as required by thetransmission
layer modules in order to allow them to both send and re-
ceive data; and switching the radio on/off as appropriate
for the individual protocol. A block of time is simply an
interval during which the radio is exclusively handed over
to a particular transmission module which has previously
requested that theλMAC layer give it n milliseconds in
order to send a packet sequence; conversely time blocks
are also allocated when a packet comes in informing the

Figure 1:λMAC protocol stack

local node that another node will be performing a packet
sequence for a short period from now and so the local
node should not give the radio over to other transmission-
layer requests for time. Note that when we talk about the
good time to send a packet, we imply that this is a time
with a high probability that the destination node will be
able to receive the packet, which is information that the
λMAC layer needs to keep track of as part of its time
management role.

2.3 Design conclusions

Given our new formulation of a MAC protocol stack, we
redefine the required modules and connections as follows
(see Figure 1 for an overview of how these interact):

• Packet layer - responsible for the actual send-
ing/receiving of a packet, radio state changes
(Rx/Tx/sleep) and for providing carrier sense func-
tions (for CSMA-basedλMAC protocols). The
sending/receiving radio state here is “dumb” - it does
things right now, with no options for delay or smart
decisions considered. In the case of byte-based ra-
dios, we also provide a platform-specific byte inter-
face layer (which can only be talked to via the Packet
layer), and for packet-based radios the Packet layer
is a slim layer on top of the existing hardware capa-
bilities. This allows us to abstract away from the dif-
ferences of these two paradigms, as only packet-level
information is required for theλMAC implementa-
tion.

Wp 2 http://www.st.ewi.tudelft.nl/˜{parker,koen}/
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• Global Time layer - responsible for storage and gen-
eration of global time information to provide cross-
network event synchronisation, e.g. frame timers.
This is not required by allλMAC layers, but given
that global time information is useful to a large quan-
tity of WSN MAC layers (due to the energy sav-
ings that can be made if nodes are able to agree
when transmit/receive periods should be), that the in-
formation is potentially useful to other layers, and
doing accurate timing information above the MAC
layer (given the uncertainty of timing in at least the
10-msec range above most WSN MAC protocols)
is very difficult, we implemented the Global Time
layer here as a general service to the entire applica-
tion stack.
Responsibility for when to send packets is still the
province of theλMAC layer, but the Global Time
layer will add its own information on sending.
The Global Time layer will also override theλMAC
layer’s decisions on when to stay awake on a periodic
basis in order to do neighbour discovery. The over-
rides will make the radio be in receive mode more
than it would be normally off, but will not switch
the radio off when the MAC wishes it to be on, or
switch the radio from transmit to receive mode (or
vice versa).
The Global Time layer here provides the same inter-
faces as the Packet layer in addition to the Global
Time interface in order to allow altering of packets
(for the purposes of timing information) on their way
to/from the Packet layer itself. For more information,
see Section 2.5.

• λMAC - responsible for time management. Allo-
cates time blocks in response to requests from the
Transmission layer, at times that are considered to
be “good”. Talks to the Global Time layer in order
to send its own control packets, as well as for car-
rier sense checking in order to determine if the radio
medium is free for sending (for CSMA-basedλMAC
layers), and decides when to switch the radio on
and off. Passes packet send requests/receive events
from/to the Transmission layer to/from the Global
Time layer, possibly altering said packets along the
way. Given the roles now allocated to other layers,
theλMAC layer will be considerably smaller than a
traditional MAC layer.

• Multiplexer - (de-)multiplexer to allow for
the λMAC to only provide a single Allocate-
Time/MessageNow yet talk to many Transmission
layer modules.

• Transmission layer - contains the Unicast, Broadcast
and other application-level primitives of this nature.

Requests time blocks from theλMAC layer as re-
quired, and then sends packets during the allocated
time. The transmission layer is fully explored in Sec-
tion 3.

There is one limitation on the choice of MAC protocol for
the λMAC layer - that it is possible to allocate contigu-
ous blocks of time that can be used for both sending and
receiving by a node. This is possible for all contention-
based MACs, and for some TDMA-based MACs, but this
may require some alterations to the protocols.

2.4 λ interfaces

As we wish to define common connections between the
λMAC and Transmission layers to enable reuse of the
Transmission modules, we need to define some stan-
dard interfaces for these connections. We use here the
terminology of nesC [4] to provide common semantics,
and also because our reference implementation is imple-
mented on top of TinyOS [6]. There should however be
no obstructions to implementing this with any other WSN
software platform. The following interfaces are based on
the extensions described by the Guesswork routing proto-
col [10].

We define two separate interfaces, AllocateTime (Ta-
ble 1) and MessageNow (Table 2). AllocateTime defines
the necessary functionality for a Transmission module to
allocate time from theλMAC layer, and MessageNow al-
lows the sending and receiving of messages during the
allocated time. In general, a Transmission level mod-
ule requires a single instance of the AllocateTime inter-
face, plus one instance of the MessageNow interface per
message type (e.g. the Broadcast module requires a sin-
gle MessageNow, and a standard Unicast requires 4 Mes-
sageNow interfaces (RTS, CTS, DATA and ACK)). The
λMAC layer, however, only needs to provide a single in-
stance of each of AllocateTime and MessageNow to the
Multiplexer module. The Multiplexer module provides
generic multiplexing services to create a parametrised in-
terface to both AllocateTime and MessageNow, thus en-
abling the capability for multiple Transmission layer mod-
ules to be enabled in a single application, without having
to deal with the multiplexing complexity in eachλMAC
layer.

Individual Transmission layer modules could be imple-
mented using a single MessageNow interface per mod-
ule. However for modules that require multiple message
types (e.g. Unicast), the implementers of the Transmis-
sion modules would have to both add their own type field
to the sent messages, and do de-multiplexing of the differ-
ent types at the receiver side. As the Multiplexer module
allows for multiple instances of MessageNow already (in
order to allow multiple Transmission modules in a single
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Name Type Args Return Function

requestBlock command uint16_t
msec

result_t Request an AllocateTime period ofmsec millisec-
onds. A return value of FAIL indicates a persistent
failure i.e. the requested period is too long.

requestSafeBlock command uint16_t
msec

result_t Request an AllocateTime period ofmsec millisec-
onds, trading off increased latency for a better chance
of success. Should only be called after a previous
AllocateTime block has run to completion, but has
completely failed i.e. no response has been received
from any other nodes at all. A return value of FAIL
indicates a persistent failure i.e. the requested period
is too long.

startBlock event result_t
success

void Called on the successful start of an AllocateTime pe-
riod, or when a requestBlock is currently impossible.
Always corresponds to the last call to requestBlock.

sleepRemaining command void Switch the radio off for the remaining length of the
AllocateTime period. This is intended for periods
when there will be packets in the air, but none of them
are destined for this node.

sendTime command uint8_t
length

uint8_t Query how long a packet oflength bytes should take
to be transmitted with the relevant headers

endBlock event void Called at the end of an AllocateTime period
availableBlock event void After a startBlock(FAIL), this will be called next

time a good opportunity to call requestBlock occurs
e.g. next time the radio returns from a sleep period.

notifyEndBlock command void Notify module on end of block. endBlock
events happen by default for locally initiated
blocks (i.e. blocks starting with a startBlock()
event), but are switched off by default for more
non-locally initiated blocks. notifyEndBlock()
switches on endBlock events for the currently
active AllocateTime block.

Table 1: AllocateTime interface

application), the Transmission layer protocol design can
be simplified by using multiple MessageNow interfaces,
and this also removes the necessity for the overhead of an
additional type field.

The interface between the packet layer and theλMAC
layer is much simpler, and as this is more in keep-
ing with traditional WSN MAC design, we will not
cover it in detail here. The Packet layer must pro-
vide interfaces to change the radio state (Tx/Rx/sleep),
and also to send/receive packets - similar to the
send/sendDone/receive commands and events of Mes-
sageNow. For a CSMA-basedλMAC layer, the Packet
layer will also require an interface to carrier sense opera-
tions. As we stated before, the Packet layer is “dumb” -
all of the smart decisions regarding when to send, to listen
and to sleep are decided by the particularλMAC layer in
use.

2.5 Global Time

In order for many MAC protocols to operate correctly,
they require a mechanism to synchronise nodes in order
so that differing nodes can agree on events happening at
the same time e.g. synchronised awake times. Addition-
ally, placing this within the packet layer also allows us to
integrate time synchronisation information into each out-
going packet, thus reducing the need for additional con-
trol packets whenever we are sending other data packets.
However, as we wish the Global Time layer to not over-
ride λMAC-layer decisions about when to send packets,
in the case where we do not have a sufficient rate of outgo-
ing packets to guarantee time synchronisation the Global
Time layer will send a phyRequired event (Table 4) to the
λMAC layer requesting that it send a packet “soon” in
order to maintain time synchronisation.

In keeping with the idea of the Global Time layer as a
generic layer, and also because we wish to provide infor-
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Name Type Args Return Function

send command TOS_MsgPtr
msg, uint8_t

length

result_t Sends a packet right now. Fails if we are already
sending something. Should only be called during
an AllocateTime period.

sendDone event TOS_MsgPtr
msg

void Called on completion of a send()

setAddressFiltering command bool enable void Enables/Disables automatic destination address
filtering for this interface i.e. dropping all incom-
ing packets not destined either for this node or for
the broadcast address. Default is not to filter. If fil-
tering is switched on, packets not destined for this
node will cause sleepRemaining() to be called in
order to avoid overhearing the packet sequence.

receive event TOS_MsgPtr
msg,
uint16_t
fromAddr

bool Called when a message comes in that is not fil-
tered (see setAddressFiltering). Implementations
should return TRUE if they wish to stay awake for
the rest of the AllocateTime period, and FALSE
otherwise.

reservedBytes command uint8_t Number of bytes reserved at the beginning of the
data section of the TOS_Msg by lower layers

setPreambleLength command uint8_t
length

void Set length of packet preamble tolength bytes. De-
faults to 1 if not called.

Table 2: MessageNow interface

Name Type Args Return Function

setFrameTime command uint32_t
msec,

uint32_t fuzz

void Set time between frame timers (msec
milliseconds) as well as allowable fuzz time
(fuzz milliseconds)

frameIndex command uint32_t Determine location within the current frame
i.e. milliseconds since last frame timer.

globalTime async
command

globaltime_t
*temp

void Get a copy of the current local value of the
global timer. May or may not be currently
synchronised with other nodes.

frame async
event

SanityState
synchronised

void Frame Timer event.synchronised variable
indicates current synchronisation level with
other nodes: (NOT_)SANE indicates (not)
synchronised with other nodes, TX_SANE
indicates that this node will be “sane” once a
packet has been sent, and that
PhyRequired.PhyRequired() has already
been sent.

frameSkipped async
event

void Indicates that one or more frame() events
have been skipped due to Global Timer
alterations.

Table 3: TimeSync interface

mation to modules other than theλMAC layer, we need
to define the timing information appropriately. We started
with the work of Li et al [8] on theglobal schedule al-
gorithm (GSA), but then expanded it one step further. In
GSA, nodes keep track of how much time has passed since

they were switched on, and add this information to their
outgoing packets. If a node sees an incoming packet with
a greater age than the local age, the local age is updated
to be the same as the incoming packet, thus allowing the
network to converge towards a shared timing value based
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Name Type Args Return Function

phyRequired event bool
slowneigh-

bour

void Indicates that a packet (any packet) should be
sent “soon”. In the case whereslowneighbour
is true, this should be immediately in order to
be able to communicate with the neighbour
with a significantly younger Global Time value
that has just been noticed.

Table 4: PhyRequired interface

on the oldest (first switched-on) node’s age.

In the original implementation of GSA, schedule infor-
mation (time since last frame timer) was also distributed
with the age value in order to calculate the correct cur-
rent frame timer for the MAC protocol. In theλMAC
framework, we have a separate TimeSync module, which
is used by theλMAC framework as a storage location
for the current local value of theage value. However,
TimeSync provides periodic frame timers (of variable
length up to(232−1)ms) to all application modules that
require this capability (not justλMAC layers that need it)
- e.g. for experiments that require an entire field of nodes
to make a measurement at the same time (a commonly
wanted requirement for many biological experiments be-
ing proposed for sensor networks). We do this by taking
theage value modulus the frame length to provide a frame
timer every time(localAge mod FrameTime) = 0. This al-
lows the creation of multiple frame timers for different ap-
plication modules, while only requiring synchronisation
on the singleage value.

All of the periodic frame timers also have an allowable
“fuzz” value - if because of updating the local clock, we
jump over the time when we should have fired a frame
timer, but we jump over by less than the “fuzz” value,
then we fire the timer anyways. This bounds the accept-
able jitter in the frame timer event. In the event we jump
too far over the event point, the safest approach is usually
just to skip the event entirely and wait for the next one
(e.g. not doing aλT-MAC awake period that is drastically
out of sync with other nodes). This allows us to cope with
small changes in the global clock due to varying speeds of
clocks on different nodes.

3 Transmission layer modules

In this section we will look at how to implement Trans-
mission layer modules, with a focus towards the standard
set of WSN Transmission modules on top of theλMAC
layers i.e. the set of functions that would be expected from
a standard MAC protocol. An exploration of what can be
done with non-standard modules is in Section 8.

3.1 Notes on Transmission module design

Before we go into a more detailed look at how to build
basic Transmission modules, a number of features of
the MessageNow and AllocateTime interfaces should be
noted:

• The point of an AllocateTime period is to grab time
in order to send packets, with a reasonable guarantee
about our neighbours being in a state where they are
able to receive our packets. A node does not need to
be in an AllocateTime period for any other purpose.

• The AllocateTime period (as marked by a start-
Block() event) is only started when a certain level of
guarantee can be given that the radio medium will be
at least relatively quiet. In CSMA-based protocols
this will be done via a carrier sense mechanism of
random length (to resolve contention issues between
multiple nodes wishing to start AllocateTime), and
in TDMA-based protocols this is guaranteed by the
time slot mechanism.

• The λMAC layer will piggyback information about
the remaining AllocateTime period on outgoing
packets, in order to place other nodes into the Al-
locateTime state as well.

• Once an AllocateTime period is started, it cannot be
stopped. This is because of the difficulty of telling
other (possibly asleep) nodes of this change of plans.
A node can be told to go to sleep for the rest of the
time period however (via sleepRemaining()).

• Setting setAddressFiltering() is recommended for all
protocols that set the destination address to non-
broadcast addresses, as this will enable theλMAC
layer to reduce the level of calls to the Transmission
layer, and will also simplify Transmission layer de-
sign. TheλMAC layer will also be able to use the
transmitted AllocateTime value to avoid overhearing
the rest of this packet sequence.

• A receive() event’s return value says whether to stay
awake for the rest of this AllocateTime period or
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not. This is automatically handled using sleepRe-
maining(), and the Transmission layer will not gen-
erally need to call sleepRemaining except in certain
special situations (for example, if you wish to receive
packets for a short period after receive(), then go to
sleep).

3.2 Broadcast

Broadcast is simply implemented on top of a single Mes-
sageNow and AllocateTime pair. Sending is implemented
as follows

1. Call requestBlock() for sendTime(packet length)
milliseconds

2. On startBlock(), call send().

3. On sendDone(), call sleepRemaining()

Receiving is also very simple, as all instances of receive()
will return FALSE, as we will no longer be receiving ad-
ditional packets during this period.

3.3 Unicast

Unicast is somewhat more complicated than Broadcast,
partly because it can have variants both with and without
RTS/CTS. For the case with RTS/CTS, an example imple-
mentation runs as follows. During the initialisation of this
module, we should call setAddressFiltering() with TRUE,
and setcontrol_length to the return value of sendTime(0),
as this is the length of a control (RTS, CTS or ACK)
packet, because they contain no data, only MAC headers.

To send a packet, we first calculatepacket_time as
sendTime(packet length) + 3*control_length plus some
platform-dependant allowance for processing and radio
state transition delays. We need 3control_length inter-
vals for the RTS, CTS and ACK packets. We then call
requestBlock() withpacket_time. On startBlock() (as we
have a reasonable guarantee about the time slot, so we can
start immediately), we start to cascade through the RTS-
CTS-DATA-ACK sequence i.e. we send an RTS packet
using send(), wait to receive a CTS, then send a DATA
packet with send(), then wait to receive the ACK. We re-
turn FALSE from the ACK receive in order to sleep for
any left over processing time.

At the destination receiver node, we first see a receive()
with an RTS packet. As this is destined for us, we re-
turn TRUE from receive(), after first posting a task to
send a CTS with send(). Then, the receiver waits for
DATA, sends an ACK with send() and calls sleepRemain-
ing() (in order to go to sleep for any remaining left over
processing time). Other nodes that are not the destina-
tion for this Unicast sequence will automatically filter

Figure 2: WSN MAC protocol division

out these messages and go to sleep (due to the use of
setAddressFiltering()).

This is a simplified description for an example Unicast
module, and our complete implementation includes retries
for lost/missed packets. However, it gives a flavour of how
Unicast can be implemented on top of theλMAC layer.

4 Integrating existing MAC types

Now that we have shown how we intend to split up ex-
isting monolithic MAC protocols into a more generic and
reusable stack (Section 2.3), and described how that stack
works (Sections 2.4, 2.5 and 3), we need to go back and
show that all of this can work with existing MAC proto-
cols.

We divide WSN MAC protocols into 3 groups; divid-
ing first into continual listening vs. scheduled, and then
further divide scheduled listening protocols into how they
decide when to send - carrier sense vs. scheduled (see Fig-
ure 2 for a diagrammatic view of this). In the next two
sections we intend to describe our implementations of a
λMAC implementation of T-MAC (Section 5) and LMAC
(Section 6); the latter being an example of a TDMA proto-
col. We will go into further details of the protocol imple-
mentations in the relevant sections, but given the built-in
concept of time allocation due to the scheduler mecha-
nisms in each MAC protocol, conversion to theλMAC
framework was relatively simple.λLMAC caused more
difficulties due to the single-sender semantics of TDMA
time allocation, but as we will show, was still feasible.

The only protocol class that we did not have suffi-
cient time to implement yet was the group of which B-
MAC [11] is a prominent example - no consistent schedul-
ing, continual sampling of the radio medium (using LPL
in B-MAC’s case), and a complete lack of built-in time
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Figure 3: T-MAC

management. One of the challenges for theλMAC frame-
work was to be sufficiently flexible to be capable of im-
plementing such a protocol, while still providing the same
level of functionality as with other MAC protocols. How-
ever, despite the differences to other protocols, most of
the issues that we expect to encounter during the imple-
mentation of aλB-MAC have already been dealt with
during our creation ofλT-MAC. Implementing B-MAC
given our work on T-MAC requires two significant blocks
of new code - the LPL channel sampling can be imple-
mented like the active/sleep periods of T-MAC, except
much shorter and with a fixed awake time rather than T-
MAC’s dynamic one; and use of the setPreambleLength()
function of the MessageNow interface (see Table 2) is
needed to allow for the longer preambles required by LPL.

We believe that by showing that T-MAC, LMAC and
B-MAC can be implemented with theλMAC framework,
and by providing data from our experiments running the
first two on our testbed, we adequately demonstrate that
theλMAC framework is suitably generic to be able to be
a base for implementing a large proportion of currently
proposed WSN MAC protocols.

5 λT-MAC

So far we have mostly looked at generic concepts of a
λMAC layer. In this section, we describe our implemen-
tation of theλT-MAC layer, based on T-MAC [16] for
TinyOS [6].

5.1 Scheduling

T-MAC is a CSMA-based MAC protocol, derived from S-
MAC [20], but with adaptive duty cycling. The adaptive
duty cycling is based on the idea of going to sleep shortly
(TA milliseconds, defined by the time needed to receive
a minimal packet, process it, and send another minimal
packet) after the last “interesting” event - which can be a
message going out, another message coming in or the pe-
riodic firing of a frame timer every so often (see Figure 3).
The frame timer length is a trade off between energy ef-

ROM Size RAM Size Max Packet rate

T-MAC 22518 2123 9.9 packets/s
λT-MAC 21678 2192 9.3 packets/s

Table 5: Continual sending test

ficiency (with longer sleep times between awake periods)
and latency (due to the length of sleep before the next time
we can send a packet).

We took the implementation of T-MAC for TinyOS,
and adapted it to provide aλMAC layer, including the
removal of its integrated Broadcast and Unicast function-
ality. Adapting the existing T-MAC protocol to provide
the λMAC functionality was relatively simple. We used
the frame timers from the Global Time layer to remove a
lot of the complexity from T-MAC. A significant part of
the existing code was dedicated to schedule synchronisa-
tion (including discovery of new schedules); a role now
subsumed by the Global Time layer. On a requestBlock()
call, λT-MAC places the requested amount of Allocate-
Time into a nextAllocateTime variable. When T-MAC
would normally check if it has a packet to send,λT-MAC
instead checks if nextAllocateTime is not 0, and if so re-
quests that the packet layer do a carrier sense check. If
the carrier sense returns an idle radio medium, then start-
Block() is called with SUCCESS andλT-MAC waits until
the end of the AllocateTime period before doing anything
else. MessageNow send() and receive()’s pass almost un-
inhibited through theλT-MAC layer. Notably, the send()
is not delayed waiting for anything else to complete, but is
passed through to the packet layer as rapidly as possible.
If we get a phyRequired event (a request from the Global
Time layer for a packet to be sent),λT-MAC sends out a
Sync packet - a packet with no actual data payload, and
only containing timing information in order to maintain
the inter-node time synchronisation.

5.2 Testbed data

In order to test whether theλMAC concept was viable,
we comparedλT-MAC to the existing T-MAC implemen-
tation. Our testing was done on the TNOde platform, a
WSN node derived from the mica2dot design [5]. We
wished to check whether the switching from a monolithic
MAC protocol to the separatedλMAC design had af-
fected the code size, generated program size, maximum
packet transmission rate and awake/sleep ratios.

To check how large the implementations of the core
modules were in each case, we measured the nesC code
with SLOCCount [19]. ForλT-MAC, this was not only
the TMACM module, but also the RadioMessageM mod-
ule that was used to interface between GenericComm
(part of the standard TinyOS network stack) andλT-
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MAC. This added together to a total 1247 SLOC (Source
Lines Of Code) vs. 1730 lines for T-MAC, a reduction of
27.9%. Adding in the Unicast and Broadcast modules to
λT-MAC added a further 226 SLOC, reducing the savings
to 14.8%, but the reduced code size for the same function-
ality is still quite impressive.

For our application testing, one of the example T-MAC
applications was used - a simple radio testing application.
All packets in the test application had 10 bytes of dummy
data in them, and all experiments were run for 60 sec-
onds. We compiled the application with nesC 1.2.4 and
gcc 4.0.2 for the AVR.

To test the the maximum output packet rate, we used
a version of the application that sends broadcast packets
continually. Notably, T-MAC was not designed as a high
data rate MAC, but we felt this was still a useful reference
test. The result of this test are in Table 5, but the reduction
of the packet rate of only 6%, which for a unoptimised
referenceλMAC was we felt an acceptable loss.

We also tested the active duty cycle of the protocols
while sending 1 test packet every second. The result of
this test are in Table 6, which shows that the change to
the λT-MAC implementation resulted in a <1% increase
in the amount of time that the node needed to stay awake
in order to send the requested packets. The ~14% duty
cycle is quite high for T-MAC, but this is due to a com-
bination of a 610ms frame timer and a 69msTA, giving
a minimum duty cycle of ~11% even without any packets
being sent, and optimisation of the core protocol imple-
mentation could improve this significantly.

Note that for both variations of the test application that
the compiled ROM size forλT-MAC was reduced by
somewhere at least 840 bytes vs. T-MAC (the exact re-
duction varies, depending on the level of optimisation that
the compiler was able to do for the particular applica-
tion). This is not as significant as the SLOC reduction
(~3%), but this was becauseλT-MAC is only one part of
the larger application, and so existing code provides most
of the used ROM.

ROM Size RAM Size Duty cycle

T-MAC 22726 2133 14.26%
λT-MAC 21798 2202 14.4%

Table 6: Broadcast cycle time test

6 λLMAC

LMAC [17] is a TDMA-based MAC protocol, aimed
at giving WSN nodes the opportunity to communicate
collision-free, and at minimising the overhead of the phys-
ical layer by reducing the number of transceiver state
changes. The MAC protocol is self-organising in terms of

time slot assignment and synchronisation, starting from a
sink node (specified by the application). Upon startup, the
sink node sets a frame schedule and chooses the first slot
in the frame as its sending slot. Next, one-hop neighbours
receiving the sink’s transmissions, choose their sending
slots based on the frame schedule of the sink node. This
is then repeated for all next-hop neighbours. When an
application wants to send a message, LMAC delays the
transmission until the start of the node’s next sending slot.

6.1 Implementation

We created a TinyOS implementation ofλLMAC based
on the protocol description and the OMNeT++ [18] code
available from the LMAC authors. For time synchronisa-
tion between the nodes, we used the Global Time layer,
and so were able to use a frame timer to determine the
start of each slot. This way, all nodes agree on the ex-
act start time of all slots. When using a frame timer to
determine only the start of each LMAC frame, intermedi-
ate clock updates during the frame may lead to inaccurate
start times of slots near the end of an LMAC frame.

AlthoughλMAC supports sending multiple packets in
a single slot, in LMAC it is only possible for a node to
transmit a single message per frame.The authors suggest
gluing together multiple messages to the same destina-
tion to prevent high latency, but this suggestion is not im-
plemented in the available OMNeT++ program code. To
make our results comparable to the OMNeT++ implemen-
tation we had available, we did not implement this feature.

On a requestBlock() call,λLMAC sets a flag indicating
that there is a packet waiting to be sent at the node’s next
time slot. During its time slot, a node will always trans-
mit a packet. If a node has no data to send, an empty Sync
packet is sent to keep the network synchronised. Other-
wiseλLMAC calls startBlock() with SUCCESS and waits
until the end of the time slot to call endBlock().

Since a TDMA-based MAC-protocol does not need
the full Unicast RTS/CTS/ DATA/ACK sequence to keep
other nodes from transmitting at the same time, we created
a Unicast module that only sends the DATA packet. As
the TinyOS message header already contains information
about destination node and packet length, this information
was removed from the LMAC-specific header.

7 Testing

We performed a series of tests comparing theλMAC ver-
sions of LMAC and T-MAC to earlier ’monolithic’ imple-
mentations. In the case of T-MAC, we had the existing
implementation for TinyOS to compare against. As there
was no existing TinyOS code for LMAC, we had to work
from simulation data. Our simulation work is based upon
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Figure 4: ’Cloud’ test
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Figure 5: Unicast test

the simulation framework from [7], with various param-
eters (byte times, frame times, etc) altered in line with
the parameters used by theλLMAC implementation. We
used two tests: a Unicast test (Figure 5), with all nodes
sending to a single ’sink’ node; and a ’Cloud’ test (Fig-
ure 4), with two nodes designated as A and B trying to
send packets to each other, while the other nodes send
broadcast data around them. In the case of the Cloud test,
we measure the packet success rate as the success rate for
packets between A and B, ignoring all other packets. The
testbed data is from our deployed network of 16 nodes,
with power levels set to create a single-cell network with
all 16 nodes within one hop of each other; the simula-
tion data is also from a single-cell network with 16 nodes.
LMAC was set to a slot time of 50ms, with 32 slots, giv-
ing a 1.6s frame. T-MAC was set to the standard frame
time of 610ms in all cases.

As can be expected from this form of multi-
environment experiment, we encountered a number of in-
teresting results; however, the end data does prove a num-
ber of useful things. The Unicast test showed remarkably
similar numbers for both of the LMAC implementations
- the drop-off curve illustrated on the graph was as we
expected as we start to exceed the 1 packet/frame limits

Component Lines of Code % of MAC Stack

MAC Framework 3961 variable
λT-MAC 1426 26%
λLMAC 814 17%

Table 7:λMAC sizes

of LMAC. Both versions of T-MAC illustrate the char-
acteristic curve of an overloaded network, butλT-MAC
appears to be suffering from additional factors reducing
its capability to transmit and receive packets successfully.
As the packet sizes are relatively unchanged between im-
plementations, and they both require the same amount of
sync packets in order to maintain time consistency, we
are currently unsure as to the cause of this drop, but as
λLMAC is performing similarly to simulation, we be-
lieve that this is an issue withλT-MAC, rather than the
the framework.

The Cloud test was designed as an example of a test
that LMAC should succeed at, as illustrated by the near-
perfect line of the simulation LMAC. One current issue
with the simulation environment is its lack of detail re-
garding the quality of radio links, and this is is probably
why the λLMAC is unable to sustain data rates at this
level. λT-MAC on the other hand, outperforms mono-
lithic T-MAC on this test.

7.1 Code Size

To check how large the implementations of the core mod-
ules were in each case, we measured the nesC code with
SLOCCount [19] (Source Lines Of Code).λT-MAC and
λLMAC’s proportion of the total stack is in Table 7. For
λT-MAC, we had an existing TinyOS implementation,
and so we could compareλT-MAC to the older imple-
mentation. The original “monolithic” T-MAC had a total
of 4367 lines of code vs. the 1426 lines ofλT-MAC, mak-
ing λT-MAC only 32% of the original size. Notably, we
do not count the lines of code in the MAC framework that
are required byλT-MAC, as we only count the code that
would have to be written by someone building a new im-
plementation of the MAC protocol in each case, which is
the point of the code reuse due to the MAC framework.

7.2 Power Tests

To further check the performance ofλT-MAC, we wanted
to check its power usage. Unfortunately, the existing
TinyOS T-MAC implementation turned out to have a
number of bugs regarding power usage (specifically, it
used a lot more than it should), hindering direct compar-
isons, so instead we decided to stick to scenarios where
existing research (i.e. the original T-MAC paper [16]) pro-
vided us with examples of how a T-MAC implementation
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Figure 7: Detail of send/recieve sequence

should behave in terms of power used. We stuck to a sim-
ple two-node, unicast sender-reciever pair, with the sender
node transmitting 1 packet/second.

Figure 6 shows several seconds of the power readings
from this application, withλT-MAC demonstrating the
classic T-MAC “awake for short time, sleep for long pe-
riod” graph, clearly demonstrating good synchronisation
between the two nodes.

Figure 7 shows a detail from part of the send/receive
sequence from the nodes. The CC1000 radio used by our
nodes has similar TX and RX power levels, so the details
are difficult to make out, but between 8.945s and 8.962s
the DATA packet is being transmitted, and the ACK is be-
ing sent between 8.962s and 8.977s. The amount of power
used, and the time spent in transmit and receive mode is
consistent with our expectations for a T-MAC implemen-
tation, giving us additional confidence in the ability of the
λMAC framework to correctly implement this protocol.

8 Further Transmission modules

In this section we look at some Transmission modules that
can be implemented on top of theλMAC layer that would
not be considered part of a standard MAC protocol, but
would provide useful additional primitives for other ap-
plications. Notably, these would be non-trivial to add to
most normal MAC protocols, as we would either have to
try and build them out of Broadcast and Unicast opera-
tions, which would be significantly sub-optimal; or we
would need to rebuild the MAC entirely. Our modular
approach makes these additions not only possible, but rel-
atively easy.

8.1 ExOR

ExOR (Extremely Optimistic Routing) is a “one send,
many replies” approach to reliable multicast for routing
protocols, first explored by Biswas and Morris [1], and
an extended version was proposed in the Guesswork rout-
ing protocol [10]. Both variants can be implemented on
top of the MessageNow and AllocateTime interfaces, but
would require significant effort to implement inside exist-
ing MAC protocols.

Figure 8: Example ExOR packet timeline

An ExOR sending node sends a packet that not only
contains the data for the packet, but also a list of other
nodes that should respond (in the order that they are meant
to respond in). Every node that is in the list that receives
the packet waits sufficient time for all of the earlier nodes
in the list to respond, and then sends an ACK to the sender
node (see Figure??). This can be used for a number of
things - for example, implementing Reliable Broadcast,
as the sending node knows that all nodes that it receives
an ACK from have received the packet; or making a best-
effort next-hop transfer in a routing algorithm (by using
the ACKs to implement an election mechanism to pick the
“best” possible next-hop node that has correctly received
the original packet).

From the point of view of implementing ExOR as a
Transmission layer, it can be considered as a variant of
Unicast, with no RTS/CTS and a series of receiver nodes,
all of which need to pause a variable amount of time
before sending their ACK packets, and then call sleep-
Remaining() to avoid overhearing the remaining ACKs.
As the destination address field is invalid in this case
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(as there is a list of destination nodes later on in the
packet), we need to switch off address filtering (using
setAddressFiltering()) and do the separation between des-
tination and non-destination receiver nodes in the Trans-
mission layer.

8.2 Priority Queueing and other options

Another possibility that arises once theλMAC layer has
been implemented is an option that has been requested by
various applications, namely priority queueing [9, 15] -
allowing for messages to be sent out in an order differ-
ent from that which they were received (either from other
nodes in routing scenarios, or events from local sensors).
In standard MAC protocols, the “send” method is a fire-
and-forget concept i.e. once the “send” has been called,
cancelling the message (or even being aware of whether
the message is queued or actually being sent right now) is
impossible.

However, using theλMAC layer, a priority queue can
be implemented. Specifically, that requestBlock() corre-
sponds to the normal “send” call, and that although the
corresponding startBlock() would normally be the time to
send the original packet, any other packet can be sent. To
implement a good priority queue, requestBlock() should
be called when there is a packet to send out, but with a
length appropriate to the maximum size packet that we
may wish to send. On startBlock(), we then send the high-
est priority packet that we have on hand (which may well
have arrived since the requestBlock() call), and call sleep-
Remaining() on sendDone() to trim the listening time ap-
propriately to the length of the packet we actually sent.

9 Related work

At some levels, the core concepts ofλMACs vs. tradi-
tional MAC protocols can be viewed as similar to the mi-
cro vs. macro-kernel debate in more conventional operat-
ing systems. In common with microkernel design [3, 14],
theλMAC layer is able to separate out parts of a WSN ap-
plication that would normally be considered a very com-
plex part of the system (as both MAC layers and oper-
ating system kernels in general tend to be regarded by
many programmers as “here be dragons” areas of code),
and these separated parts are then able to be altered with
a significantly lower chance of affecting the rest of the
codebase.

Polastre et. al [12] proposed the Sensornet Protocol
(SP) that provided a greater level of control to applica-
tions wishing to influence the choices made by lower level
protocols. Their system created a much more horizon-
tal design for differing levels of an application stack, as
opposed to the more traditional vertical design in nor-

mal MAC protocols. This design allowed a lot of control
at application-level, with the trade-off that an application
was able to tweak core parts of the MAC layer that could
potentially introduce significant instabilities in the MAC,
unless the application was fully aware of how the partic-
ular MAC would react to those changes. In theλMAC
design, applications have large quantities of control - they
can allocate arbitrary blocks of time and do pretty much
whatever they like during this time - but in a way that pre-
serves the integrity of theλMAC layer, as it is able to de-
lay AllocateTime requests until it is a “good” (for values
of “good” defined by the individualλMAC layer) time for
the application to have control. TheλMAC separation of
control, with most timing control out of the hands of the
application designer, allows for cleaner, safer, and simpler
design.

Ee et. al [?] attempted similar goals, but for routing
protocols. Their approach looked at providing a generic
toolkit for building routing protocols, and for creating
modules that could be used to piece together protocols, in-
cluding the possibility of new hybrid protocols built from
parts of earlier protocols. Their wish to do this as opposed
to a framework design such as we proposed is possibly in-
dicative of a wider variety of options in routing protocol
design, as opposed to the relatively small set (time man-
agement) that we have identified here for MAC protocols.

10 Conclusions

We set out to redesign and rethink how MAC protocols
are designed for WSNs, to create a new and improved
design concept, and to modularise common functionality.
We have managed to do this, and along the way also pro-
vide new capabilities and a refocused take on the role of
a MAC in the WSN network stack. The reduction in the
roles of a MAC protocol to its core feature of time man-
agement, by separating out the Global Time layer to pro-
vide application-wide time synchronisation, as well as the
Transmission layer modules to allow for clean separation
of the logic required for features like Unicast, has given a
new look at an old topic.

From our testing here, we have managed to show that
our initial attempt at a referenceλMAC layer (λT-MAC)
was able to achieve similar performance, both in terms
of data rates and power usage, to a traditionally designed
MAC protocol, but with a significant decrease in com-
plexity. Lines of code is not always a good indicator of
system complexity, but the reduction of duties required of
λT-MAC vs. monolithic T-MAC is. We were also able
to show that LMAC, a TDMA-based protocol that we ex-
pected to be a difficult case, turned out to be not so hard to
implement. Some modifications to our existing work were
required, and more work withλLMAC is required, but it
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has already managed to show good performance vs. exist-
ing work with traditionally designed implementations.

By implementing two significantly different MAC pro-
tocols, we have shown that our framework is sufficiently
generic to be used by the wider community as a general-
purpose MAC creation framework. Especially for exper-
imental platforms, the importance of allowing people to
extend existing work without having to reinvent the wheel
cannot be overemphasised.

10.1 Further work

Certain adaptions of the AllocateTime interface would al-
low further integration with other MAC protocols, and en-
able more efficient implementations of TDMA-based pro-
tocols. Extending the AllocateTime interface to provide
more information about what nodes are the destinations
of the packets to be sent during the interval would allow
better allocation by TDMA schemes, and possibly noting
that certain time slots are more reliably allocated than oth-
ers, as most TDMA protocols have more reliable guaran-
tees about the lack of other nodes transmitting vs. CSMA
protocols with carrier sense. In general, finding better
ways to specify more information about the usage pat-
terns for a given AllocateTime slot in a generic way to
theλMAC layer will help smarterλMAC protocols allo-
cate time more effectively. We would also like to explore
possibilities for more types of Transmission modules.

We hope that one of the side effects of our creation of
theλMAC framework will be the creation of more MAC
protocol implementations for TinyOS, as many new MAC
protocols are currently only implemented in simulation,
and simulation is a poor guide to how something as low-
level and radio hardware dependant as a MAC protocol
will behave on real hardware.
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